Introduction to Analytic Number Theory
Chapter 1: The Fundamental Theorem of Arithmetic

newell jensen@gmail.com
Exercises:
1. If (a,b) =1 and if ¢ | a and d | b, then (c,d) = 1.
Proof. If ¢ | a and d | b, then nc = a and md = b, for integers n, m.
Therefore, 1 = azx + by = ncx + mdy = ¢(nx) + d(my) showing that (¢,d) = 1. O
2. If (a,b) = (a,c) =1, then (a,bc) = 1.

Proof. If ax1 + by; = 1 and axs + cyo = 1, then multiplying these two together we get:

(ax1 +byr)(axe +cy2) =1 = a’x1zo 4 acriys + abzoyr + beyrys = 1
= a(ax122 + cxrys + brayr) + (be)(y1y2) = 1
= (a,bc) = 1.

3. If (a,b) = 1, then (a™,b*) =1foralln > 1,k > 1.
Proof.
base case - n = k =1 is already given via (a,b) = 1.
induction hypothesis - Assume (a”~1,b¥=1) =1 for alln > 1,k > 1.
induction step - Let d = (a™,b%), then d = (aa™ 1, bb*~ 1) = aa" 'z + bbF 1y
d = a(a""'z) + b(b*1y) = 1 [base case where (a" 1x), (b*1y) € N]

d = a" Y(ax) + b*~1(by) = 1 [induction hypothesis where (az), (by) € N]
Thus, we see we must have d = 1.
Therefore, if (a,b) = 1, then (a™,b*) =1 for all n > 1,k > 1. O

4. If (a,b) = 1, then (a + b,a — b) is either 1 or 2.
Proof. 1f (a,b) =1 and d = (a + b,a — b), then we have 1 = ax + by and d = (a + b)x + (a — b)y so that
d=(a+bz+(a—by=alz+y)+bz—y) =1
d=(a+b)x+ (a—0b)y=[ay +bx]+[ax +b(—y)=1+1=2
Another way to do this is
(a+b)(z+y)+ (a—0b)(x—y) = (ax+ ay + bz + by) + (ax — ay — bx + by) = 2ax + 2by = 2(ax + by) = 2
which can also be written as
2ax + 2by = a(2z) + b(2y) = 1.

Therefore (a + b,a — b) is either 1 or 2. O



5. If (a,b) = 1, then (a + b,a? — ab + b?) is either 1 or 3.
Proof. Let d = (a + b,a® — ab + b?).
Since a? —ab+b? = (a +b)? —3aband d | (a +b) = d| (a+ b)?, then d | (—3ab).
But (a,b) =1 = d t ab therefore d | 3 and since 3 is prime its only divisors are 1 and itself. O
6. If (a,b) =1, and if d | (a + b), then (a,d) = (b,d) = 1.
Proof. Since d | (a +b) we can write thisasd=a+b = a=d—-band b=d —a.
Therefore, since (a,b) = 1 we have
ax+by=1= (d—blz+by=1 = de+bly—2z)=1 = (d,b)=1 = (b,d) =1
ax+by=1 = ar+(d-a)y=1 = alr—y)+dy=1 = (a,d) =1.
Therefore, (a,d) = (b,d) = 1. O

7. A rational number a/b with (a,b) = 1 is called a reduced fraction. If the sum of two reduced fractions is
an integer, say (a/b) + (¢/d) = n, prove that |b| = |d|.

Proof. 44< =n = %t —pn — ad+bc=nbd => b|ad,d | cbbut since (a,b) = (¢,d) =1 = b|d
and d | b. Therefore, |b| = |d|. O

8. An integer is called squarefree if it is not divisible by the square of any prime. Prove that for every n > 1
there exist uniquely determined @ > 0 and b > 0 such that n = a?b, where b is squarefree.

Proof. From the fundamental theorem of arithmetic we know that any positive integer n can be written as
ai a
n = pl ce prr .

To get this into the form of n = a2b, where b is squarefree we can sort the primes. If the power, a;, of a
particular prime p; is odd we can take one factor of this prime and add it as a factor for b. Then, we can take
half of the remaining factors and add them as a factor for a [the other half are represented by the squaring
of a]. If the power a; is not odd, then we simply add half of the factors to a. If we do this for all primes in
the unique prime factorization for n, we will arrive at n = a2b. O

9. For each of the following statements, either give a proof or exhibit a counter example.
(a) If b? | n and a® | n and a® < b2, then a | b.

Counter example - Let n = 36,a = 2,b = 3. Then a> =4 | 36 and b> = 9| 36 but 21 3.
(b) If b? is the largest square divisor of n, then a? | n implies a | b.

Proof. In Exercise 8 we proved that that for every n > 1 there exist uniquely determined b > 0 and d > 0
such that n = b%d, where d is squarefree (note that we have relabeled the equation here to better line up
with the variables that we are used in this Exercise).

Therefore, n = b>d => b* | n as we already know. However, since a® | n we see that a® must be a factor
from b? as d is squarefree. Therefore, a? | b> = a | b. O

10. Given z and y, let m = az + by, n = cx + dy, where ad — bc = £1. Prove that (m,n) = (z,y).

Proof. From the definition of gcd we know that (m,n) = ms + nt for integers s, t.



ms + nt = (ax + by)s + (cx + dy)t = axs + bys + cxt + dyt = x(as + ct) + y(bs + dt)
Therefore, since (as + ct) and (bs + dt) are in Z we have that (m,n) = (z,y). O
Note: there is another way to prove this that uses ad — bc = +1 but personally prefer this algebraic method.

The other way takes the system of linear equations in m,n and solves for z,y and then uses the fact that
ad — bc = £1 to simplify. This then shows that x,y are linear combinations in m,n and are also divisible by
m,n so that we arrive at the conclusion:

(x,y) |m> (x,y) | n and (man) ‘ z, (man) ‘ Yy = (I',y) | (m7n) and (mvn) ‘ (’lf,y) = (mvn) = (1’,y)
11. Prove that n* + 4 is composite if n > 1.

Proof. n* + 4 can be factored as (n? + 2n + 2)(n? — 2n + 2) and for n > 1 these two factors are different
from one another and belong to Z.

Therefore, n* + 4 is composite if n > 1. O
In exercises 12, 13 and 14, a, b, ¢, m,n denote positive integers.

12. For each of the following statements either give a proof or exhibit a counter example.

(a) If @™ | b™ then a | b.

Proof. TIf a™ | b™ then ajas - - ay, | biby - by.

TODO: re-check this proof — As each side has n items, if we remove n — 1 terms on each side we are left
with a | b. O

(b) If n™ | m™ then n | m.

Counter example - a = 4,b =10 = 4* | 10 since 10000000000/256=39062500 but 4 { 10.
(c) If a™ | 2b™ and n > 1, then a | b.

13. If (a,b) = 1 and (a/b)™ = n, prove that b = 1.

Proof.

1/m g irrational.

Additionally, if n is not the mth power of a positive integer, prove that n
14. If (a,b) = 1 and ab = ¢", prove that a = z™ and b = y™ for some z and y. [Hint: Consider d = (a, c).]
Proof.

15. Prove that every n > 12 is the sum of two composite numbers.

Proof.

16. Prove that if 2" — 1 is prime, then n is prime.

Proof.

17. Prove that if 2" 4+ 1 is prime, then n is a power of 2.

Proof.



18. If m # n compute the ged(a®” + 1,a%" 4 1) in terms of a. [Hint: Let A, = a®>" + 1 and show that
Apn | (A —2) if m > n.]

Proof.

19. The Fibonacci sequence 1,1,2,3,5,8,13,21,34,... is defined by the recursion formula a,,+1 = a,, +an_1,
with a1 = a3 = 1. Prove that (an,a,+1) = 1 for each n.

Proof.

20. Let d = (826,1890). Use the Euclidean algorithm to compute d, then express d as a linear combination
of 826 and 1890.

Proof.

21. The least common multiple (lcm) of two integers a and b is denoted by [a,b] or by aMb, is defined as
follows:

[a,b] = |ab|/(a,b) if a # 0 and b # 0,
[a,b] =0ifa=00rb=0.

Prove that the lcm has the following properties:

(a) If a = 12, p?* and b = 152, p% then [a,b] = 132, p5*, where ¢; = mazxa;, b;.
(b) (aDb)Mc = (aMc)D(bMec).

(¢) (aMb)Dc = (aDc)M (bDc).

Proof (a).

Proof (b).

Proof (c).

22. Prove that (a,b) = (a + b, [a, b]).

Proof.

23. The sum of two positive integers is 5264 and their least common multiple is 200,340. Determine the two
integers.

Proof.
24. Prove that the following multiplicative property of the ged:
_ a k b h
(ah’ bk) - (aa b)(hv k)( (a,b)? (h,k) )( (a,b)’ W)

In particular this shows that (ah,bk) = (a, k)(b, h) whenever (a,b) = (h, k) = 1.

Proof.
25. If (a,b) =1 there exist > 0 and y > 0 such that ax — by = 1.
Proof.

26. If (a,b) = 1 and 2% = y° then z = n® and y = n® from some n. [Hint: Use Exercises 25 and 13.]



Proof.

27.

(a) If (a,b) = 1 then for every n > ab there exist positive z and y such that n = ax + by.
(b) If (a,b) =1 there are no positive = and y such that ab = ax + by.

Proof.

28. If a > 1 then (a™ — 1,a™ — 1) = a(™™ — 1.

Proof.

29. Given n > 0, let .S be a set whose elements are positive integers < 2n such that if a and b are in S and
a # b then a t b. What is the maximum number of integers that S can contain? [Hint: S can contain at
most one of the integers 1,2,22,23 ... at most one of the 3,3 -2,3-22, ..., etc.]

Proof.
30. If n > 1 prove that the sum
noo1
Zk:l k
is not an integer.

Proof.



