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Exercises:

1. If (a, b) = 1 and if c | a and d | b, then (c, d) = 1.

Proof. If c | a and d | b, then nc = a and md = b, for integers n,m.

Therefore, 1 = ax + by = ncx + mdy = c(nx) + d(my) showing that (c, d) = 1. �

2. If (a, b) = (a, c) = 1, then (a, bc) = 1.

Proof. If ax1 + by1 = 1 and ax2 + cy2 = 1, then multiplying these two together we get:

(ax1 + by1)(ax2 + cy2) = 1 =⇒ a2x1x2 + acx1y2 + abx2y1 + bcy1y2 = 1

=⇒ a(ax1x2 + cx1y2 + bx2y1) + (bc)(y1y2) = 1

=⇒ (a, bc) = 1.

�

3. If (a, b) = 1, then (an, bk) = 1 for all n ≥ 1, k ≥ 1.

Proof.

base case - n = k = 1 is already given via (a, b) = 1.

induction hypothesis - Assume (an−1, bk−1) = 1 for all n ≥ 1, k ≥ 1.

induction step - Let d = (an, bk), then d = (aan−1, bbk−1) = aan−1x + bbk−1y

d = a(an−1x) + b(bk−1y) = 1 [base case where (an−1x), (bk−1y) ∈ N]

d = an−1(ax) + bk−1(by) = 1 [induction hypothesis where (ax), (by) ∈ N]

Thus, we see we must have d = 1.

Therefore, if (a, b) = 1, then (an, bk) = 1 for all n ≥ 1, k ≥ 1. �

4. If (a, b) = 1, then (a + b, a− b) is either 1 or 2.

Proof. If (a, b) = 1 and d = (a + b, a− b), then we have 1 = ax + by and d = (a + b)x + (a− b)y so that

d = (a + b)x + (a− b)y = a(x + y) + b(x− y) = 1

d = (a + b)x + (a− b)y = [ay + bx] + [ax + b(−y)] = 1 + 1 = 2

Another way to do this is

(a + b)(x + y) + (a− b)(x− y) = (ax + ay + bx + by) + (ax− ay − bx + by) = 2ax + 2by = 2(ax + by) = 2

which can also be written as

2ax + 2by = a(2x) + b(2y) = 1.

Therefore (a + b, a− b) is either 1 or 2. �



5. If (a, b) = 1, then (a + b, a2 − ab + b2) is either 1 or 3.

Proof. Let d = (a + b, a2 − ab + b2).

Since a2 − ab + b2 = (a + b)2 − 3ab and d | (a + b) =⇒ d | (a + b)2, then d | (−3ab).

But (a, b) = 1 =⇒ d - ab therefore d | 3 and since 3 is prime its only divisors are 1 and itself. �

6. If (a, b) = 1, and if d | (a + b), then (a, d) = (b, d) = 1.

Proof. Since d | (a + b) we can write this as d = a + b =⇒ a = d− b and b = d− a.

Therefore, since (a, b) = 1 we have

ax + by = 1 =⇒ (d− b)x + by = 1 =⇒ dx + b(y − x) = 1 =⇒ (d, b) = 1 =⇒ (b, d) = 1

ax + by = 1 =⇒ ax + (d− a)y = 1 =⇒ a(x− y) + dy = 1 =⇒ (a, d) = 1.

Therefore, (a, d) = (b, d) = 1. �

7. A rational number a/b with (a, b) = 1 is called a reduced fraction. If the sum of two reduced fractions is
an integer, say (a/b) + (c/d) = n, prove that |b| = |d|.

Proof. a
b + c

d = n =⇒ ad+bc
bd = n =⇒ ad+bc = nbd =⇒ b | ad, d | cb but since (a, b) = (c, d) = 1 =⇒ b | d

and d | b. Therefore, |b| = |d|. �

8. An integer is called squarefree if it is not divisible by the square of any prime. Prove that for every n ≥ 1
there exist uniquely determined a > 0 and b > 0 such that n = a2b, where b is squarefree.

Proof. From the fundamental theorem of arithmetic we know that any positive integer n can be written as
n = pa1

1 · · · par
r .

To get this into the form of n = a2b, where b is squarefree we can sort the primes. If the power, ai, of a
particular prime pi is odd we can take one factor of this prime and add it as a factor for b. Then, we can take
half of the remaining factors and add them as a factor for a [the other half are represented by the squaring
of a]. If the power ai is not odd, then we simply add half of the factors to a. If we do this for all primes in
the unique prime factorization for n, we will arrive at n = a2b. �

9. For each of the following statements, either give a proof or exhibit a counter example.

(a) If b2 | n and a2 | n and a2 ≤ b2, then a | b.

Counter example - Let n = 36, a = 2, b = 3. Then a2 = 4 | 36 and b2 = 9 | 36 but 2 - 3.

(b) If b2 is the largest square divisor of n, then a2 | n implies a | b.

Proof. In Exercise 8 we proved that that for every n ≥ 1 there exist uniquely determined b > 0 and d > 0
such that n = b2d, where d is squarefree (note that we have relabeled the equation here to better line up
with the variables that we are used in this Exercise).

Therefore, n = b2d =⇒ b2 | n as we already know. However, since a2 | n we see that a2 must be a factor
from b2 as d is squarefree. Therefore, a2 | b2 =⇒ a | b. �

10. Given x and y, let m = ax + by, n = cx + dy, where ad− bc = ±1. Prove that (m,n) = (x, y).

Proof. From the definition of gcd we know that (m,n) = ms + nt for integers s, t.



ms + nt = (ax + by)s + (cx + dy)t = axs + bys + cxt + dyt = x(as + ct) + y(bs + dt)

Therefore, since (as + ct) and (bs + dt) are in Z we have that (m,n) = (x, y). �

Note: there is another way to prove this that uses ad− bc = ±1 but personally prefer this algebraic method.

The other way takes the system of linear equations in m,n and solves for x, y and then uses the fact that
ad− bc = ±1 to simplify. This then shows that x, y are linear combinations in m,n and are also divisible by
m,n so that we arrive at the conclusion:

(x, y) | m, (x, y) | n and (m,n) | x, (m,n) | y =⇒ (x, y) | (m,n) and (m,n) | (x, y) =⇒ (m,n) = (x, y).

11. Prove that n4 + 4 is composite if n > 1.

Proof. n4 + 4 can be factored as (n2 + 2n + 2)(n2 − 2n + 2) and for n > 1 these two factors are different
from one another and belong to Z.

Therefore, n4 + 4 is composite if n > 1. �

In exercises 12, 13 and 14, a, b, c,m, n denote positive integers.

12. For each of the following statements either give a proof or exhibit a counter example.

(a) If an | bn then a | b.

Proof. If an | bn then a1a2 · · · an | b1b2 · · · bn.

TODO: re-check this proof — As each side has n items, if we remove n − 1 terms on each side we are left
with a | b. �

(b) If nn | mm then n | m.

Counter example - a = 4, b = 10 =⇒ 44 | 1010 since 10000000000/256=39062500 but 4 - 10.

(c) If an | 2bn and n > 1, then a | b.

13. If (a, b) = 1 and (a/b)m = n, prove that b = 1.

Proof.

Additionally, if n is not the mth power of a positive integer, prove that n1/m is irrational.

14. If (a, b) = 1 and ab = cn, prove that a = xn and b = yn for some x and y. [Hint : Consider d = (a, c).]

Proof.

15. Prove that every n ≥ 12 is the sum of two composite numbers.

Proof.

16. Prove that if 2n − 1 is prime, then n is prime.

Proof.

17. Prove that if 2n + 1 is prime, then n is a power of 2.

Proof.



18. If m 6= n compute the gcd(a2
m

+ 1, a2
n

+ 1) in terms of a. [Hint : Let An = a2
n

+ 1 and show that
An | (Am − 2) if m > n.]

Proof.

19. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . is defined by the recursion formula an+1 = an+an−1,
with a1 = a2 = 1. Prove that (an, an+1) = 1 for each n.

Proof.

20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination
of 826 and 1890.

Proof.

21. The least common multiple (lcm) of two integers a and b is denoted by [a, b] or by aMb, is defined as
follows:

[a, b] = |ab|/(a, b) if a 6= 0 and b 6= 0,
[a, b] = 0 if a = 0 or b = 0.

Prove that the lcm has the following properties:

(a) If a = Π∞i=1p
ai
i and b = Π∞i=1p

bi
i then [a, b] = Π∞i=1p

ci
i , where ci = maxai, bi.

(b) (aDb)Mc = (aMc)D(bMc).

(c) (aMb)Dc = (aDc)M(bDc).

Proof (a).

Proof (b).

Proof (c).

22. Prove that (a, b) = (a + b, [a, b]).

Proof.

23. The sum of two positive integers is 5264 and their least common multiple is 200,340. Determine the two
integers.

Proof.

24. Prove that the following multiplicative property of the gcd:

(ah, bk) = (a, b)(h, k)( a
(a,b) ,

k
(h,k) )(

b
(a,b) ,

h
(h,k) ).

In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.

Proof.

25. If (a, b) = 1 there exist x > 0 and y > 0 such that ax− by = 1.

Proof.

26. If (a, b) = 1 and xa = yb then x = nb and y = na from some n. [Hint : Use Exercises 25 and 13.]



Proof.

27.

(a) If (a, b) = 1 then for every n > ab there exist positive x and y such that n = ax + by.

(b) If (a, b) = 1 there are no positive x and y such that ab = ax + by.

Proof.

28. If a > 1 then (am − 1, an − 1) = a(m,n) − 1.

Proof.

29. Given n > 0, let S be a set whose elements are positive integers ≤ 2n such that if a and b are in S and
a 6= b then a - b. What is the maximum number of integers that S can contain? [Hint : S can contain at
most one of the integers 1, 2, 22, 23, . . . , at most one of the 3, 3 · 2, 3 · 22, ..., etc.]

Proof.

30. If n > 1 prove that the sum ∑n
k=1

1
k

is not an integer.

Proof.


